Site-Specific GlcNAcylation of Human Erythrocyte Proteins

نویسندگان

  • Zihao Wang
  • Kyoungsook Park
  • Frank Comer
  • Linda C. Hsieh-Wilson
  • Christopher D. Saudek
  • Gerald W. Hart
چکیده

OBJECTIVE O-linked N-acetylglucosamine (O-GlcNAc) is upregulated in diabetic tissues and plays a role in insulin resistance and glucose toxicity. Here, we investigated the extent of GlcNAcylation on human erythrocyte proteins and compared site-specific GlcNAcylation on erythrocyte proteins from diabetic and normal individuals. RESEARCH DESIGN AND METHODS GlcNAcylated erythrocyte proteins or GlcNAcylated peptides were tagged and selectively enriched by a chemoenzymatic approach and identified by mass spectrometry. The enrichment approach was combined with solid-phase chemical derivatization and isotopic labeling to detect O-GlcNAc modification sites and to compare site-specific O-GlcNAc occupancy levels between normal and diabetic erythrocyte proteins. RESULTS The enzymes that catalyze the cycling (addition and removal) of O-GlcNAc were detected in human erythrocytes. Twenty-five GlcNAcylated erythrocyte proteins were identified. Protein expression levels were compared between diabetic and normal erythrocytes. Thirty-five O-GlcNAc sites were reproducibly identified, and their site-specific O-GlcNAc occupancy ratios were calculated. CONCLUSIONS GlcNAcylation is differentially regulated at individual sites on erythrocyte proteins in response to glycemic status. These data suggest not only that site-specific O-GlcNAc levels reflect the glycemic status of an individual but also that O-GlcNAc site occupancy on erythrocyte proteins may be eventually useful as a diagnostic tool for the early detection of diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Specific GlcNAcylation of Human Erythrocyte Proteins: Potential Biomarker(s) for Diabetes Mellitus

Objective– O-linked N-acetylglucosamine (O-GlcNAc) is up-regulated in diabetic tissues, and plays a role in insulin resistance and glucose toxicity. Here, we investigated the extent of GlcNAcylation on human erythrocyte proteins and compared site-specific GlcNAcylation on erythrocyte proteins from diabetic and normal individuals. Research Design and Methods– GlcNAcylated erythrocyte proteins or...

متن کامل

Increased Expression of β-N-Acetylglucosaminidase in Erythrocytes From Individuals With Pre-diabetes and Diabetes

OBJECTIVE O-linked beta-N-acetylglucosamine (O-GlcNAc) plays an important role in the development of insulin resistance and glucose toxicity. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT), which attaches O-GlcNAc to serine and/or threonine residues of proteins and by O-GlcNAcase, which removes O-GlcNAc. We investigated the expression of these two enzymes in erythrocytes of human su...

متن کامل

Three Decades of Research on O-GlcNAcylation – A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism

Even though the dynamic modification of polypeptides by the monosaccharide, O-linked N-acetylglucosamine (O-GlcNAcylation) was discovered over 30 years ago, its physiological significance as a major nutrient sensor that regulates myriad cellular processes has only recently been more widely appreciated. O-GlcNAcylation, either on its own or by its interplay with other post-translational modifica...

متن کامل

Investigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line

Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and the...

متن کامل

Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity.

O-linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that, analogous to phosphorylation, cycles on and off serine and/or threonine hydroxyl groups. Cycling of O-GlcNAc is regulated by the concerted actions of O-GlcNAc transferase and O-GlcNAcase. GlcNAcylation is a nutrient/stress-sensitive modification that regulates proteins involved in a wide array of biol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009